Automatic Idiom Recognition with Word Embeddings
نویسندگان
چکیده
Expressions, such as add fuel to the fire, can be interpreted literally or idiomatically depending on the context they occur in. Many Natural Language Processing applications could improve their performance if idiom recognition were improved. Our approach is based on the idea that idioms and their literal counterparts do not appear in the same contexts. We propose two approaches: (1) Compute inner product of context word vectors with the vector representing a target expression. Since literal vectors predict well local contexts, their inner product with contexts should be larger than idiomatic ones, thereby telling apart literals from idioms; and (2) Compute literal and idiomatic scatter (covariance) matrices from local contexts in word vector space. Since the scatter matrices represent context distributions, we can then measure the difference between the distributions using the Frobenius norm. For comparison, we implement [8,16,24] and apply them to our data. We provide experimental results validating the proposed techniques.
منابع مشابه
Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملAcoustic Word Embeddings for ASR Error Detection
This paper focuses on error detection in Automatic Speech Recognition (ASR) outputs. A neural network architecture is proposed, which is well suited to handle continuous word representations, like word embeddings. In a previous study, the authors explored the use of linguistic word embeddings, and more particularly their combination. In this new study, the use of acoustic word embeddings is exp...
متن کاملAutomatic Idiom Identification in Wiktionary
Online resources, such as Wiktionary, provide an accurate but incomplete source of idiomatic phrases. In this paper, we study the problem of automatically identifying idiomatic dictionary entries with such resources. We train an idiom classifier on a newly gathered corpus of over 60,000 Wiktionary multi-word definitions, incorporating features that model whether phrase meanings are constructed ...
متن کاملNeural Network Based Named Entity Recognition
Czech named entity recognition (the task of automatic identification and classification of proper names in text, such as names of people, locations and organizations) has become a well-established field since the publication of the Czech Named Entity Corpus (CNEC). This doctoral thesis presents the author’s research of named entity recognition, mainly in the Czech language. It presents work and...
متن کاملTowards Unsupervised Automatic Speech Recognition Trained by Unaligned Speech and Text only
Automatic speech recognition (ASR) has been widely researched with supervised approaches, while many lowresourced languages lack audio-text aligned data, and supervised methods cannot be applied on them. In this work, we propose a framework to achieve unsupervised ASR on a read English speech dataset, where audio and text are unaligned. In the first stage, each word-level audio segment in the u...
متن کامل